
Filomat 30:1 (2016), 141–155
DOI 10.2298/FIL1601141K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article, we concern with the nonlinear Bernstein operators NBn f of the form

(NBn f )(x) =

n∑
k=0

Pn,k

(
x, f

(
k
n

))
, 0 ≤ x ≤ 1 , n ∈N,

acting on bounded functions on an interval [0, 1] , where Pn,k satisfy some suitable assumptions. As a
continuation of the very recent paper of the authors [22], we estimate their pointwise convergence to a
function f having derivatives of bounded (Jordan) variation on the interval [0, 1] .

We note that our results are strict extensions of the classical ones, namely, the results dealing with the
linear Bernstein polynomials.

1. Introduction

We consider the problem of approximating a given real-valued function f , defined on [0, 1], by means
of a sequence of nonlinear Bernstein operators NBn f . Positive linear operators, convolution, moment and
sampling operators have an important role in several branches of Mathematics. For instance, in recon-
struction of signals and images, in Fourier analysis, operator theory, probability theory and approximation
theory (see e.g. [14, 28]).

In this paper, we will take into account the nonlinear Bernstein operators, generated by the classical
Bernstein operators considered in [22].

Let f be a function defined on the interval [0, 1] and letN := {1, 2, ...} . The classical Bernstein polynomial
of f : [0, 1]→ R of degree n is defined by

(Bn f )(x) =

n∑
k=0

f
(

k
n

)
pn,k(x) , 0 ≤ x ≤ 1 , n ∈N, (1)

where pn,k(x) =

(
n
k

)
xk(1 − x)n−k is the Bernstein basis. These polynomials were introduced by Bernstein [10]

in 1912 to give the first constructive proof of the Weierstrass approximation theorem. Some properties of
the polynomials (1) can be found in Lorentz [23].
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We now state a brief and technical explanation of the relation between approximation by linear and
nonlinear operators. Approximation with nonlinear integral operators of convolution type was introduced
by J. Musielak in [25] and widely developed in [7] (and the references contained therein). To the best of our
knowledge, the approximation problem were limited to linear operators because the notion of singularity
of an integral operator is closely connected with its linearity until the fundamental paper of Musielak [25].
In [25], the assumption of linearity of the singular integral operators was replaced by an assumption of a
Lipschitz condition for the kernel function Kλ(t,u) with respect to the second variable. Especially, nonlinear
integral operators of the following type

(
Tλ f

)
(x) =

b∫
a

Kλ(t − x, f (t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro-Karsli and Vinti [3, 4] and Karsli [17] in some Lebesgue spaces.

For further reading, we also refer the reader to [1, 2, 8, 9, 15, 21, 24, 29] and the very recent paper of the
authors [22] as well as the monographs [7] and [13] where other kind of convergence results of linear and
nonlinear operators in the Lebesgue spaces, Musielak-Orlicz spaces, BV-spaces and BVϕ-spaces have been
considered.

Very recently, by using the techniques due to Musielak [25], Karsli-Tiryaki and Altin [22] considered the
following type nonlinear counterpart of the well-known Bernstein operators;

(NBn f )(x) =

n∑
k=0

Pn,k

(
x, f

(
k
n

))
, 0 ≤ x ≤ 1 , n ∈N, (2)

acting on bounded functions f on an interval [0, 1] , where Pn,k satisfy some suitable assumptions. They
proved some existence and approximation theorems for the nonlinear Bernstein operators. In particular,
they obtained some pointwise convergence for the nonlinear sequence of Bernstein operators (2) to some
point x of f , as n→∞.

It should be note that the same definition of nonlinear Bernstein operators was given in the excellent
papers due to Bardaro and Mantellini [5, 6], in which other kinds of convergence properties are studied.

In the present paper, the study of operators (2) will be continued.

As a continuation of [22], we estimate their pointwise convergence to functions f and ψ ◦
∣∣∣ f ∣∣∣ having

derivatives of bounded (Jordan) variation on the interval [0, 1] .

The paper is organized as follows: The next section contains basic definitions and notations.

In Section 3, the main approximation results of this study are given. They are dealing with the rate of
pointwise convergence of the nonlinear Bernstein operators NBn f to the limit f , where f and ψ ◦

∣∣∣ f ∣∣∣ are
functions whose derivatives are of bounded variation on the interval [0, 1]. We shall prove that (NBn f )(x)
converge to the limit f (x) for x ∈ (0, 1). Let us note that the counterpart of such kind of results for
positive linear operators are the rate of convergence for functions in DBV(I), functions whose derivatives
are bounded variation defined on a set I ⊂ R, were first obtained by Bojanic and Cheng [11, 12]. Further
papers on the subject are [16, 18, 19], and [26, 27].

In Section 4, we give some crucial results which are necessary to prove the main result.

The final section, that is Section 5, concerns with the proof of the main results presented in Section 3.



H. Karsli, I. U. Tiryaki, H. E. Altin / Filomat 30:1 (2016), 141–155 143

2. Preliminaries

In this section, we recall the following structural assumptions according to [22], which will be funda-
mental in proving our convergence theorems.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]→ R.

Let Ψ be the class of all functions ψ : R+
0 → R

+
0 such that the function ψ is continuous and concave with

ψ(0) = 0, ψ(u) > 0 for u > 0.
We now introduce a sequence of functions. Let

{
Pn,k

}
n∈N be a sequence functions Pn,k : [0, 1] xR→ R defined

by

Pn,k (t,u) = pn,k(t)Hn(u) (3)

for every t ∈ [0, 1],u ∈ R, where Hn : R→ R is such that Hn(0) = 0 and pn,k(t) is the Bernstein basis.
Throughout the paper, we assume that µ : N → R+ is an increasing and continuous function such that
lim
n→∞

µ(n) = ∞.

First of all, we assume that the following conditions hold:
a ) Hn : R→ R is a real-valued function such that

|Hn(u) −Hn(v)| ≤ ψ (|u − v|) , ψ ∈ Ψ,

holds for every u, v ∈ R, and n ∈N. That is, Hn satisfies a
(
L − ψ

)
Lipschitz condition (see [7]).

b ) We now set

Kn(x,u) :=


∑

k≤nu
pn,k(x) , 0 < u ≤ 1

0 , u = 0
(4)

and

An(x) :=

x+(1−x)/nγ/β∫
x−x/nγ/β

dt (Kn(x, t)) for any fixed x ∈ (0, 1)

where β > 0, γ ≥ 1 and

λn (x, t) :=

t∫
0

du (Kn (x,u)) . (5)

Similar approach and some particular examples can be found in [8, 20–22] and [27].

Suppose that there are β > 0, γ ≥ 1 such that a finite function C(x) exists with

nγ/β
(
Bn |t − x|β

)
(x) ≤ C(x), x ∈ (0, 1) (6)

uniformly with respect to n ∈N.

c) Denoting by rn(u) := Hn(u) − u, u ∈ R and n ∈N. We suppose that for n sufficiently large

sup
u
|rn(u)| = sup

u
|Hn(u) − u| ≤

1
µ(n)

holds.
The symbol [a] will denote the greatest integer not greater than a.
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3. Convergence Results

We will consider the following type of nonlinear Bernstein operators,

(
NBn f

)
(x) =

n∑
k=0

Pn,k

(
x, f

(
k
n

))
defined for every f ∈ X for which NBn f is well-defined, where

Pn,k(x,u) = pn,k(x)Hn(u)

for every x ∈ [0, 1],u ∈ R.
For any function f for which the one-sided limits f (x+), f (x−) exist at every point x ∈ (0, 1), we let

fx(t) =


f (t) − f (x+) , x < t ≤ 1

0 , t = x
f (t) − f (x−) , 0 ≤ t < x

(7)

and
1∨
0
ψ(

∣∣∣ fx∣∣∣) is the total variation of ψ(
∣∣∣ fx∣∣∣) on [0, 1].

Let DBV (I) denotes the class of differentiable functions defined on a set I ⊂ R whose derivatives are
bounded variation on I and will be denoted as

DBV (I) =
{
f : f ′ ∈ BV (I)

}
.

We are now ready to establish the main results of this study:

Theorem 3.1. Let ψ ∈ Ψ and f be a function with derivatives of bounded variation on [0, 1]. Then for every
x ∈ (0, 1), we have for sufficiently large n,

∣∣∣(NBn f
)

(x) − f (x)
∣∣∣ ≤ ∣∣∣∣∣∣ f ′ (x+) − f ′ (x−)

2

∣∣∣∣∣∣
√

x (1 − x)
n

+
2
n

[
√

n]∑
k=1

x+(1−x)/k∨
x−x/k

(
f
′

x

)
+

1
µ (n)

(8)

where
b∨
a

(
f ′x
)

is the total variation of f ′x on [a, b].

Theorem 3.2. Let ψ ∈ Ψ and f ∈ X be such that ψ ◦
∣∣∣ f ∣∣∣ ∈ DBV ([0, 1]). Then for every x ∈ (0, 1), we have for

sufficiently large n,

∣∣∣(NBn f
)

(x) − f (x)
∣∣∣ ≤

∣∣∣∣(ψ ◦ ∣∣∣ f ∣∣∣)′ (x−) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+)
∣∣∣∣

2

√
x (1 − x)

n

+
2
n

[
√

n]∑
k=1

x+(1−x)/k∨
x−x/k

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

+
1

µ (n)
(9)

where
b∨
a

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

is the total variation of
(
ψ ◦

∣∣∣ f ∣∣∣)′
x

on [a, b].
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4. Auxiliary Result

In this section, we give crucial results which are necessary to prove our theorems.

Lemma 4.1. For (Bnts)(x), s = 0, 1, 2, one has

(Bn1)(x) = 1, (Bnt)(x) = x, (Bnt2)(x) = x2 +
x(1 − x)

n
.

For the proof of this Lemma see [23].

By direct calculation, we find the following equalities:

(Bn (t − x)2)(x) =
x(1 − x)

n
, (Bn (t − x))(x) = 0.

Lemma 4.2. For all x ∈ (0, 1) and for each n ∈N, one has

λn(x, t) =:

t∫
0

du (Kn(x,u)) ≤
C(x)

(x − t)βnγ/β
, 0 ≤ t < x, (10)

and

1 − λn(x, t) =

1∫
t

du (Kn(x,u)) ≤
C(x)

(t − x)βnγ/β
, x < t < 1 (11)

where C(x) is as given in (6).

Proof. We have

λn(x, t) = :

t∫
0

du (Kn(x,u)) ≤

t∫
0

(x − u
x − t

)β
du (Kn(x,u))

≤
1

(x − t)β

1∫
0

|u − x|β du (Kn(x,u)) .

According to (6), we have

λn(x, t) ≤
C(x)

(x − t)βnγ/β
.

Proof of (11) is analogous.

5. Proof of the Theorems

Proof of Theorem 3.1. In general, a singular integral may be written in the form

(
Tn f

)
(x) =

b∫
a

f (t) Mn (x, t) dt (12)

where Mn (x, t) is the kernel, defined for a ≤ x ≤ b , a ≤ t ≤ b, which has the property that for functions f (x)
of a certain class and in a certain sense,

(
Tn f

)
(x) converges to f (x) as n→∞.
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The Bernstein polynomial (1) is a finite sum of a type corresponding to the integral (12). Both (1) and
(12) are special cases of singular Stieltjes integrals. (1) may be written in the form of a Stieltjes integral in
the variable t,

(
Bn f

)
(x) =

1∫
0

f (t) dtKn (x, t)

with the kernel

Kn (x, t) =
∑
k≤nt

(
n
k

)
xk (1 − x)n−k , 0 < t ≤ 1

Kn (x, 0) = 0

which is constant in any interval k/n ≤ t < (k + 1) /n , k = 0, 1, ...,n − 1.
We can write the difference between

(
NBn f

)
(x) and f (x) as a singular Stieltjes integral as follows;

(
NBn f

)
(x) − f (x) =

n∑
k=0

Pn,k

(
x, f

(
k
n

))
− f (x)

=

n∑
k=0

pn,k (x) Hn

(
f
(

k
n

))
− f (x)

=

1∫
0

Hn
(

f (t)
)

dtKn (x, t) − f (x)

=

1∫
0

[
Hn

(
f (t)

)
− f (t)

]
dtKn (x, t) +

1∫
0

[
f (t) − f (x)

]
dtKn (x, t)

= In,1 (x) + In,2 (x) .

Firstly, we consider

In,2 (x) =

1∫
0

[
f (t) − f (x)

]
dtKn (x, t) . (13)

Since f (t) ∈ DBV [0, 1], we can rewrite (13) as follows

In,2 (x) =

x∫
0

[
f (t) − f (x)

]
dtKn (x, t) +

1∫
x

[
f (t) − f (x)

]
dtKn (x, t)

= −

x∫
0


x∫

t

f ′ (u) du

 dtKn (x, t) +

1∫
x


t∫

x

f ′ (u) du

 dtKn (x, t)

= −In,2,1 (x) + In,2,2 (x) ,

where

In,2,1 (x) =

x∫
0


x∫

t

f ′ (u) du

 dtKn (x, t) (14)
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and

In,2,2 (x) =

1∫
x


t∫

x

f ′ (u) du

 dtKn (x, t) . (15)

For any f (t) ∈ DBV [0, 1], we decompose f ′ (t) into four parts by using (7) as

f ′(t) =
f ′(x+) + f ′(x−)

2
+ f ′x(t) +

f ′(x+) − f ′(x−)
2

s1n(t − x)

+δx(t)
[

f ′(x) −
f ′(x+) + f ′(x−)

2

]
,

where

δx(t) =

{
1 , x = t
0 , x , t .

If we use this equality in (14) and (15), we have the following expressions.

In,2,1 (x) =

x∫
0


x∫

t

1
2
(

f ′(x+) + f ′(x−)
)

+ f ′x (u) +
f ′(x+) − f ′(x−)

2
s1n(u − x)

+δx(u)
[

f ′ (x) −
1
2
(

f ′(x+) + f ′(x−)
)]

du
}

dtKn (x, t)

and

In,2,2 (x) =

1∫
x


t∫

x

1
2
(

f ′(x+) + f ′(x−)
)

+ f ′x (u) +
f ′(x+) − f ′(x−)

2
s1n(u − x)

+δx(u)
[

f ′ (x) −
1
2
(

f ′(x+) + f ′(x−)
)]

du
}

dtKn (x, t) .

Firstly, we evaluate In,2,1 (x).

In,2,1 (x) =
f ′(x+) + f ′(x−)

2

x∫
0

(x − t) dtKn (x, t) +

x∫
0


x∫

t

f ′x (u) du

 dtKn (x, t)

−
f ′(x+) − f ′(x−)

2

x∫
0

(x − t) dtKn (x, t)

+

[
f ′(x) −

f ′(x+) + f ′(x−)
2

] x∫
0


x∫

t

δx(u)du

 dtKn (x, t) .

It is obvious that
x∫

t
δx(u)du = 0. From this fact that, we get

In,2,1 (x) =
f ′(x+) + f ′(x−)

2

x∫
0

(x − t) dtKn (x, t) +

x∫
0


x∫

t

f ′x (u) du

 dtKn (x, t)

−
f ′(x+) − f ′(x−)

2

x∫
0

(x − t) dtKn (x, t) . (16)
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Using a similar method, for evaluating In,2,2 (x), we find that

In,2,2 (x) =
f ′(x+) + f ′(x−)

2

1∫
x

(t − x) dtKn (x, t) +

1∫
x


t∫

x

f ′x (u) du

 dtKn (x, t)

−
f ′(x+) − f ′(x−)

2

1∫
x

(t − x) dtKn (x, t) . (17)

Combining (16) and (17), we get

−In,2,1 (x) + In,2,2 (x) =
f ′(x+) + f ′(x−)

2

1∫
0

(t − x) dtKn (x, t) +

+
f ′(x+) − f ′(x−)

2

1∫
0

|t − x| dtKn (x, t) −

x∫
0


x∫

t

f ′x (u) du

 dtKn (x, t) +

1∫
x


t∫

x

f ′x (u) du

 dtKn (x, t) .

From the last expression, we can rewrite (13) as follows.

In,2 (x) =
f ′(x+) + f ′(x−)

2

1∫
0

(t − x) dtKn (x, t) +
f ′(x+) − f ′(x−)

2

1∫
0

|t − x| dtKn (x, t)

−

x∫
0


x∫

t

f ′x (u) du

 dtKn (x, t) +

1∫
x


t∫

x

f ′x (u) du

 dtKn (x, t) . (18)

On the other hand, since

1∫
0

|t − x| dtKn (x, t) = Bn (|t − x| ; x)

and

1∫
0

(t − x) dtKn (x, t) = Bn ((t − x) ; x) ,

by using these equalities in (18) and taking the absolute value, we can re-expressed (18) as follows;∣∣∣In,2 (x)
∣∣∣ ≤ ∣∣∣∣∣ f ′(x+) + f ′(x−)

2

∣∣∣∣∣ |Bn (t − x; x)| +
∣∣∣∣∣ f ′(x+) − f ′(x−)

2

∣∣∣∣∣ |Bn (|t − x| ; x)|

+

∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
1∫

x


t∫

x

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ . (19)

Using Lebesgue-Stieltjes integration, and according to (5), we obtain

x∫
0


x∫

t

f ′x (u) du

 dtKn (x, t) =

x∫
0

f ′x (t)λn (x, t) dt.
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Thus ∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤
x∫

0

∣∣∣ f ′x (t)
∣∣∣λn (x, t) dt

and ∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤
x− x

√
n∫

0

∣∣∣ f ′x (t)
∣∣∣λn (x, t) dt +

x∫
x− x

√
n

∣∣∣ f ′x (t)
∣∣∣λn (x, t) dt.

Since f ′x (x) = 0 and λn (x, t) ≤ 1, one has

x∫
x− x

√
n

∣∣∣ f ′x (t)
∣∣∣λn (x, t) dt =

x∫
x− x

√
n

∣∣∣ f ′x (t) − f ′x (x)
∣∣∣λn (x, t) dt ≤

x∫
x− x

√
n

x∨
t

(
f ′x
)

dt.

By the change of variables t = x − x
√

n
, we obtain

x∫
x− x

√
n

x∨
t

(
f ′x
)

dt ≤
x∨

x− x
√

n

(
f ′x
) x∫
x− x

√
n

dt.

Besides from (10), we can write

x− x
√

n∫
0

∣∣∣ f ′x (t)
∣∣∣λn (x, t) dt ≤

x (1 − x)
n

x− x
√

n∫
0

∣∣∣ f ′x (t) − f ′x (x)
∣∣∣ dt

(x − t)2

≤
x (1 − x)

n

x− x
√

n∫
0

x∨
t

(
f ′x
) dt

(x − t)2 .

By the change of variables t = x − x
u again, we have

x (1 − x)
n

x− x
√

n∫
0

x∨
t

(
f ′x
) dt

(x − t)2 =
x (1 − x)

n

√
n∫

1

x∨
x− x

u

(
f ′x
) (

x
u2

)
du(

x
u

)2

≤
(1 − x)

n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)

and hence we obtain∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤ x
√

n

x∨
x− x

√
n

(
f ′x
)

+
(1 − x)

n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)
.

Since

x
√

n

x∨
x− x

√
n

(
f ′x
)
≤

2x
n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)
,
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it follows that

x
√

n

x∨
x− x

√
n

(
f ′x
)

+
(1 − x)

n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)
≤

2x
n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)

+
2 (1 − x)

n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)

≤
2
n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)
.

Therefore∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤ 2
n

[
√

n]∑
k=1

x∨
x− x

k

(
f ′x
)
.

Using a similar method for estimating, then we have∣∣∣∣∣∣∣∣
1∫

x


t∫

x

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤ 1 − x
√

n

x+ 1−x
√

n∨
x

(
f ′x
)

+
x
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)
.

Furthermore, since

1 − x
√

n

x+ 1−x
√

n∨
x

(
f ′x
)
≤

2 (1 − x)
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)
,

we can write the following inequality

1 − x
√

n

x+ 1−x
√

n∨
x

(
f ′x
)

+
x
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)
≤

2 (1 − x)
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)

+
2x
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)

≤
2
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)
.

Thus we get∣∣∣∣∣∣∣∣
1∫

x


t∫

x

f ′x (u) du

 dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤ 2
n

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
f ′x
)
.

Collecting the estimates, we get (8), i.e.,

∣∣∣In,2 (x)
∣∣∣ ≤ ∣∣∣∣∣ f ′(x+) − f ′(x−)

2

∣∣∣∣∣
√

x (1 − x)
n

+
2
n

[
√

n]∑
k=1

x+ 1−x
k∨

x− x
k

(
f ′x
)
,

and

∣∣∣In,1 (x)
∣∣∣ =

∣∣∣∣∣∣∣∣
1∫

0

[
Hn

(
f (t)

)
− f (t)

]
dtKn (x, t)

∣∣∣∣∣∣∣∣ ≤
1∫

0

∣∣∣Hn
(

f (t)
)
− f (t)

∣∣∣ dtKn (x, t) ≤
1

µ (n)

holds for sufficiently large n.
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This completes the proof of the theorem.
Proof of Theorem 3.2. We can write the difference between

(
NBn f

)
(x) and f (x) as a singular Stieltjes

integral as follows;

∣∣∣(NBn f
)

(x) − f (x)
∣∣∣ =

∣∣∣∣∣∣∣∣
1∫

0

Hn
(

f (t)
)

dtKn (x, t) − f (x)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1∫

0

[
Hn

(
f (t)

)
−Hn

(
f (x)

)]
dtKn (x, t) +

1∫
0

[
Hn

(
f (x)

)
− f (x)

]
dtKn (x, t)

∣∣∣∣∣∣∣∣
≤

1∫
0

∣∣∣Hn
(

f (t)
)
−Hn

(
f (x)

)∣∣∣ dtKn (x, t) +

1∫
0

∣∣∣Hn
(

f (x)
)
− f (x)

∣∣∣ dtKn (x, t)

≤

1∫
0

∣∣∣Hn
(

f (x)
)
− f (x)

∣∣∣ dtKn (x, t) +

1∫
0

ψ
(∣∣∣ f (t) − f (x)

∣∣∣) dtKn (x, t)

= In,1 (x) + In,2 (x) .

Note that for a concave function ψ

−ψ
(∣∣∣ f (t) − f (x)

∣∣∣) ≤ ψ (∣∣∣ f (t)
∣∣∣) − ψ (∣∣∣ f (x)

∣∣∣)
holds. Firstly, we consider

In,2 (x) =

1∫
0

ψ
(∣∣∣ f (t) − f (x)

∣∣∣) dtKn (x, t) . (20)

Since
(
ψ ◦

∣∣∣ f ∣∣∣) (t) ∈ DBV [0, 1], we can rewrite (20) as follows:

−In,2 (x) ≤

0∫
x

[
ψ

(∣∣∣ f (t)
∣∣∣) − ψ (∣∣∣ f (x)

∣∣∣)] dtKn (x, t) +

x∫
1

[
ψ

(∣∣∣ f (t)
∣∣∣) − ψ (∣∣∣ f (x)

∣∣∣)] dtKn (x, t)

=

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′ (u) du

 dtKn (x, t) +

1∫
x


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′ (u) du

 dtKn (x, t)

= In,2,1 (x) − In,2,2 (x)

where

In,2,1 (x) =

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′ (u) du

 dtKn (x, t) (21)

and

In,2,2 (x) =

1∫
x


t∫

x

(
ψ ◦

∣∣∣ f ∣∣∣)′ (u) du

 dtKn (x, t) . (22)
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For any
(
ψ ◦

∣∣∣ f ∣∣∣) (t) ∈ DBV [0, 1], we decompose
(
ψ ◦

∣∣∣ f ∣∣∣) (t) into four parts by using (7) as

(
ψ ◦

∣∣∣ f ∣∣∣)′ (t) =

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2
+

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(t)

+

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2
s1n (t − x)

+δx (t)

(ψ ◦ ∣∣∣ f ∣∣∣)′ (x) −

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

 ,
where

δx(t) =

{
1 , x = t
0 , x , t .

If we use this equality in (21) and (22), we have the following expressions.

In,2,1 (x) =

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2
+

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u)

+

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2
s1n (u − x)

+δx (u)

(ψ ◦ ∣∣∣ f ∣∣∣)′ (x) −

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

 du

 dtKn (x, t)

and

In,2,2 (x) =

1∫
x


t∫

x

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2
+

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u)

+

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2
s1n (u − x)

+δx (u)

(ψ ◦ ∣∣∣ f ∣∣∣)′ (x) −

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

 du

 dtKn (x, t) .

Firstly, we evaluate In,2,1 (x).

In,2,1 (x) =

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t) dtKn (x, t)

+

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t)

−

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t) dtKn (x, t)

+

(ψ ◦ ∣∣∣ f ∣∣∣)′ (x) −

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2


x∫

0


x∫

t

δx (u) du

 dtKn (x, t) .



H. Karsli, I. U. Tiryaki, H. E. Altin / Filomat 30:1 (2016), 141–155 153

It is obvious that
x∫

t
δx (u) du = 0. From this fact that, we get

In,2,1 (x) =

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t) dtKn (x, t)

+

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) (23)

−

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t) dtKn (x, t) .

Using a similar method, for evaluating In,2,2 (x), we find that

In,2,2 (x) =

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
x

(t − x) dtKn (x, t)

+

1∫
x


t∫

x

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) (24)

−

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
x

(t − x) dtKn (x, t) .

Combining (23) and (24), we get

In,2,1 (x) − In,2,2 (x) =

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) +
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
0

(t − x) dtKn (x, t)

−

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
0

|t − x| dtKn (x, t)

+

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) −

1∫
x


t∫

x

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) .

On the other hand, note that

1∫
0

|t − x| dtKn (x, t) = Bn (|t − x| ; x) ≤
√(

Bn (t − x)2
)

(x) =

√
x (1 − x)

n

and

1∫
0

(t − x) dtKn (x, t) = Bn ((t − x)) (x) = 0.
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Therefore we can estimate In,2,1 (x) − In,2,2 (x) as follows;

In,2,1 (x) − In,2,2 (x) ≤

(
ψ ◦

∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)

2

√
x (1 − x)

n

+

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) −

1∫
x


t∫

x

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) .

Using Lebesgue-Stieltjes integration, and according to (5), we obtain

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) =

x− x
√

n∫
0

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(t)λn (x, t) dt +

x∫
x− x

√
n

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(t)λn (x, t) dt.

By using the method in the proof of the previous Theorem 1, one has

x∫
0


x∫

t

(
ψ ◦

∣∣∣ f ∣∣∣)′
x

(u) du

 dtKn (x, t) ≤
2
n

[
√

n]∑
k=1

x∨
x− x

k

(
ψ ◦

∣∣∣ f ∣∣∣)′
x
,

and

−

1∫
x


t∫

x

f ′x (u) du

 dtKn (x, t) ≤
2
n

[
√

n]∑
k=1

x+ 1−x
√

n∨
x

(
ψ ◦

∣∣∣ f ∣∣∣)′
x
.

In conclusion we obtain

In,2 (x) ≤

∣∣∣∣(ψ ◦ ∣∣∣ f ∣∣∣)′ (x+) −
(
ψ ◦

∣∣∣ f ∣∣∣)′ (x−)
∣∣∣∣

2

√
x (1 − x)

n
+

2
n

[
√

n]∑
k=1

x+ 1−x
√

n∨
x− x

k

(
ψ ◦

∣∣∣ f ∣∣∣)′
x
.

Since

In,1 (x) =

1∫
0

∣∣∣Hn
(

f (t)
)
− f (t)

∣∣∣ dtKn (x, t) ≤
1

µ (n)

holds for sufficiently large n, the proof of the Theorem 2 is now complete.
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